ELSTON HALL Learning Trust

DIVISION

Reception:

EHLT are implementing Mastering Number at Reception in September 2024.

The programme aims to secure firm foundations in the development of good number sense for all children from Reception through to Year 1 and Year 2. The aim over time is that children will leave KS1 with fluency in calculation and a confidence and flexibility with number. Attention will be given to key knowledge and understanding needed in Reception classes, and progression through KS1 to support success in the future. Over the year, the children will experience using a range of resources and representations.

Research shows that children with secure 'number sense' early on will make more progress later on in maths and across the curriculum.

		DIVISION KEY	VOCABULARY		
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
share; share equally; one each; two each; groups; groups of; lots of; array	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line;	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over; inverse; remainder;	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over; inverse; remainder; regroup; carry; multiple; short division; divisible by; factor; quotient; prime number; prime factors; composite numbers;	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over; inverse; remainder; regroup; carry; multiple; short division; divisible by; factor; quotient; prime number; prime factors; composite numbers;

^{*}This vocabulary is not an exhaustive list. Teachers will use recommended NCETM vocabulary in lessons.

	REAL-LIFE REPRESENTATION	OTHER REPRESENTATION
Halving and sharing	Children explore halving and sharing through practical sharing using real life scenarios including sharing fruit or classroom equipment.	Children use five frames to share amounts fairly and to check that the groups are equal. They share the counters/cubes one by one.
	Half of 8 is 4.	Half of 6 is 3.

	CONCRETE	PICTORIAL	ABSTRACT
Grouping	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made.	Represent a whole and work out how many equal groups.	Children may relate this to counting back in steps of 2, 5 or 10.
	Sort a whole set people and objects into equal groups.	000000000	
		There are 10 in total. There are 5 in each group. There are 2 groups.	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	There are 10 children altogether. There are 2 in each group. There are 5 groups.		
Sharing	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.

YEAR 2 DIVISION

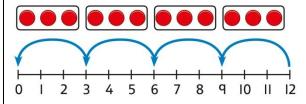
	CONCRETE	PICTORIAL	ABSTRACT
Sharing equally	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Use a bar model to support understanding of the division.
			18
	12 shared equally between 2. They get 6 each.	20 shared into 5 equal parts. There are 4 in each part.	18 ÷ 2 = 9
	Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared		
	They get 5 each.		
	15 shared equally between 3. They get 5 each.		

Grouping equally

Understand how to make equal groups from a whole.

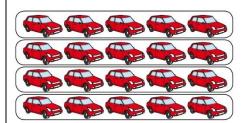
8 divided into 4 equal groups. There are 2 in each group. Understand the relationship between grouping and the division statements.

 $12 \div 4 = 3$

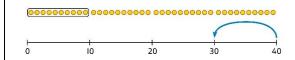

 $12 \div 6 = 2$

 $12 \div 2 = 6$

Understand how to relate division by grouping to repeated subtraction.


There are 4 groups now.

12 divided into groups of 3. 12 ÷ 3 = 4


There are 4 groups.

Using known times-tables to solve divisions

Understand the relationship between multiplication facts and division.

4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5. Link equal grouping with repeated subtraction and known times-table facts to support division.

40 divided by 4 is 10.

Use a bar model to support understanding of the link between times-table knowledge and division.

10 10

Relate times-table knowledge directly to division.

 $1 \times 10 = 10$ $2 \times 10 = 20$ $3 \times 10 = 30$ $4 \times 10 = 40$ $5 \times 10 = 50$

 $6 \times 10 = 60$ $7 \times 10 = 70$ $8 \times 10 = 80$ I used the I0 times-table to help me. $3 \times 10 = 30$.

I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3.

 $3 \times 10 = 30$ so $30 \div 10 = 3$

YEAR 3 DIVISION

	CONCRETE	PICTORIAL	
Using times- tables knowledge to divide	CONCRETE Use knowledge of known times-tables to calculate divisions. 24 divided into groups of 8. There are 3 groups of 8.	PICTORIAL Use knowledge of known times-tables to calculate divisions.	Use knowledge of known times-tables to calculate divisions. I need to work out 30 shared between 5. I know that $6 \times 5 = 30$ so I know that $30 \div 5 = 6$. A bar model may represent the relationship between sharing and grouping. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Understanding remainders

Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.

There are 13 sticks in total. There are 3 groups of 4, with 1 remainder. Use images to explain remainders.

22 ÷ 5 = 4 remainder 2

Understand that the remainder is what cannot be shared equally from a set.

$$22 \div 5 = ?$$

$$3 \times 5 = 15$$

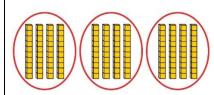
$$4 \times 5 = 20$$

5 × 5 = 25 ... this is larger than 22

Using known facts to divide multiples of 10

Use place value equipment to understand how to divide by unitising.

Make 6 ones divided by 3.



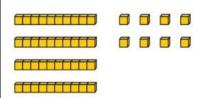
Now make 6 tens divided by 3.

What is the same? What is different?

Divide multiples of 10 by unitising.

12 tens shared into 3 equal groups. 4 tens in each group.

Divide multiples of 10 by a single digit using known times-tables.


180 is 18 tens.

18 divided by 3 is 6. 18 tens divided by 3 is 6 tens.

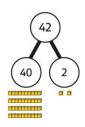
$$18 \div 3 = 6$$

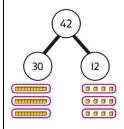
 $180 \div 3 = 60$

2-digit number divided by 1-digit number, no remainders Children explore dividing 2-digit numbers by using place value equipment.

$$48 \div 2 = ?$$

First divide the 10s.




Then divide the 1s.

Children explore which partitions support particular divisions.

I need to partition 42 differently to divide by 3.

$$42 = 30 + 12$$

$$42 \div 3 = 14$$

Children partition a number into 10s and 1s to divide where appropriate.

$$60 \div 2 = 30$$

$$8 \div 2 = 4$$

$$30 + 4 = 34$$

$$68 \div 2 = 34$$

Children partition flexibly to divide where appropriate.

$$42 \div 3 = ?$$

$$42 = 40 + 2$$

I need to partition 42 differently to divide by 3.

$$42 = 30 + 12$$

$$30 \div 3 = 10$$

$$12 \div 3 = 4$$

$$10 + 4 = 14$$

$$42 \div 3 = 14$$

2-digit number divided by 1-digit number, with remainders

Use place value equipment to understand the concept of remainder.

Make 29 from place value equipment. Share it into 2 equal groups.

There are two groups of 14 and 1 remainder.

Use place value equipment to understand the concept of remainder in division.

 $29 \div 2 = ?$

29 ÷ 2 = 14 remainder 1

Partition to divide, understanding the remainder in context.

67 children try to make 5 equal lines.

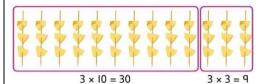
$$67 = 50 + 17$$

 $50 \div 5 = 10$

17 ÷ 5 = 3 remainder 2 67 ÷ 5 = 13 remainder 2

There are 13 children in each line and 2 children left out.

YEAR 4 DIVISION

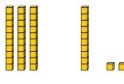

	CONCRETE	PICTORIAL	ABSTRACT
Understanding the	Use objects to explore families of multiplication and division facts.	Represent divisions using an array.	Understand families of related multiplication and division facts.
relationship between multiplication			I know that $5 \times 7 = 35$ so I know all these facts: $5 \times 7 = 35$
and division, including	4 × 6 = 24		7 × 5 = 35 35 = 5 × 7
times-tables	24 is 6 groups of 4. 24 is 4 groups of 6.		35 = 7 × 5 35 ÷ 5 = 7 35 ÷ 7 = 5
	24 divided by 6 is 4. 24 divided by 4 is 6.	28 ÷ 7 = 4	7 = 35 ÷ 5 5 = 35 ÷ 7
Dividing multiples of 10 and 100 by a	Use place value equipment to understand how to use unitising to divide.	Represent divisions using place value equipment.	Use known facts to divide 10s and 100s by a single digit.
single digit		q ÷ 3 =	15 ÷ 3 = 5 150 ÷ 3 = 50
		90 ÷ 3 = 10 10 10 10 10 10	1500 ÷ 3 = 500
	8 ones divided into 2 equal groups 4 ones in each group	900 ÷ 3 = 100 100 100 100 100 100 100	
	8 tens divided into 2 equal groups 4 tens in each group	9 ÷ 3 = 3	
	8 hundreds divided into 2 equal groups 4 hundreds in each group	9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	

Dividing 2digit and 3digit numbers by a single digit by partitioning into 100s, 10s and 1s

Partition into 10s and 1s to divide where appropriate.

$$39 \div 3 = ?$$

$$39 = 30 + 9$$


$$9 \div 3 = 3$$

$$39 \div 3 = 13$$

Dividing 2digit and 3digit numbers by a single digit, using flexible partitioning Use place value equipment to explore why different partitions are needed.

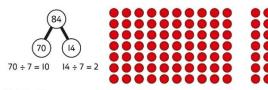
$$42 \div 3 = ?$$

I will split it into 30 and 12, so that I can divide by 3 more easily.

Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate.

$$39 \div 3 = ?$$

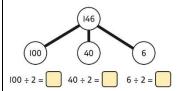
3 groups of I ten 3 groups


$$39 = 30 + 9$$

$$30 \div 3 = 10$$

$$9 \div 3 = 3$$

Represent how to partition flexibly where needed.


I will partition into 70 and 14 because I am dividing by 7.

 $84 \div 7 = 12$

Partition into 100s, 10s and 1s using a partwhole model to divide where appropriate.

$$142 \div 2 = ?$$

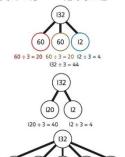
$$100 \div 2 = 50$$

 $40 \div 2 = 20$

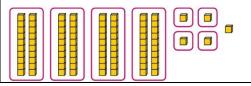
$$6 \div 2 = 3$$

$$50 + 20 + 3 = 73$$

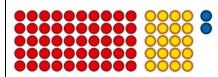
$$142 \div 2 = 73$$


Make decisions about appropriate partitioning based on the division required.

Understand that different partitions can be used to complete the same division.



Understanding remainders


Use place value equipment to find remainders.

85 shared into 4 equal groups

There are 24, and 1 that cannot be shared.

Represent the remainder as the part that cannot be shared equally.

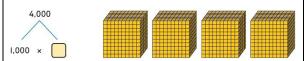
72 ÷ 5 = 14 remainder 2

Understand how partitioning can reveal remainders of divisions.

 $80 \div 4 = 20$ $12 \div 4 = 3$

95 ÷ 4 = 23 remainder 3

YEAR 5 DIVISION


	CONCRETE	PICTORIAL	ABSTRACT
Understanding	Use equipment to explore the factors of a	Understand that prime numbers are numbers	Understand how to recognise prime and
factors and	given number.	with exactly two factors.	composite numbers.
prime numbers		13 ÷ 1 = 13 13 ÷ 2 = 6 r 1	I know that 31 is a prime number because it
	24 ÷ 3 = 8		can be divided by only 1 and itself without
	24 ÷ 8 = 3	13 ÷ 4 = 4 r 1	leaving a remainder.
	8 and 3 are factors of 24 because they divide	4 442 4 6 6 642	
	24 exactly.	1 and 13 are the only factors of 13.	I know that 33 is not a prime number as it
		13 is a prime number.	can be divided by 1, 3, 11 and 33.
	24 ÷ 5 = 4 remainder 4.		
	0000 0000 0000 0000		I know that 1 is not a prime number, as it has only 1 factor.
	5 is not a factor of 24 because there is a		
	remainder.		
Understanding	Use equipment to group and share and to	Represent multiplicative relationships and	Represent the different multiplicative
inverse	explore the calculations that are present.	explore the families of division facts.	relationships to solve problems requiring
operations and	•	•	inverse operations.
the link with	I have 28 counters.	(000) (000) (000) (000)	12 ÷ 3 =
		0000 0000 0000 0000	12 ÷ = 3
multiplication,	I made 7 groups of 4. There are 28 in total.		
grouping and	3 ,	0000 0000 0000 0000	× 3 = 12 × 3
sharing	I have 28 in total. I shared them equally into		÷ 3 = 12
	7 groups. There are 4 in each group.	60 ÷ 4 = 15	
	grouper more and him calcin group.	60 ÷ 15 = 4	Understand missing number problems for
	I have 28 in total. I made groups of 4. There		division calculations and know how to solve
	are 7 equal groups.		them using inverse operations.
	a.c. oqua, groups.		22 ÷ ? = 2
			22 ÷ 2 = ?
			? ÷ 2 = 22
			? ÷ 22 = 2

Dividing whole
numbers by 10,
100 and 1,000

Use place value equipment to support unitising for division.

4,000 ÷ 1,000

4,000 is 4 thousands.

4 × 1,000 = 4,000

So, $4,000 \div 1,000 = 4$

Use a bar model to support dividing by unitising.

 $380 \div 10 = 38$

-	-	-	3	-		-	-	-	
---	---	---	---	---	--	---	---	---	--

380

380 is 38 tens.

38 × 10 = 380

 $10 \times 38 = 380$

So, 380 ÷ 10 = 38

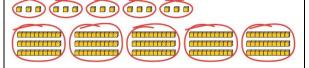
Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.

Th	Н	Т	0
3	2	0	0

3,200 ÷ 100 = ?

3,200 is 3 thousands and 2 hundreds.

200 ÷ 100 = 2

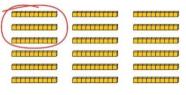

 $3,000 \div 100 = 30$

3,200 ÷ 100 = 32

So, the digits will move two places to the right.

Dividing by multiples of 10, 100 and 1,000

Use place value equipment to represent known facts and unitising.


15 ones put into groups of 3 ones. There are 5 groups.

 $15 \div 3 = 5$

15 tens put into groups of 3 tens. There are 5 groups.

 $150 \div 30 = 5$

Represent related facts with place value equipment when dividing by unitising.

180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. 180 ÷ 30 = 6

12 ones divided into groups of 4. There are 3

groups.

12 hundreds divided into groups of 4 hundreds. There are 3 groups.

1200 ÷ 400 = 3

Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check.

$$3,000 \div 5 = 600$$

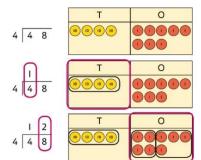
 $3,000 \div 50 = 60$
 $3,000 \div 500 = 6$

$$5 \times 600 = 3,000$$

 $50 \times 60 = 3,000$
 $500 \times 6 = 3,000$

Dividing up to four digits by a single digit using short division Explore grouping using place value equipment.

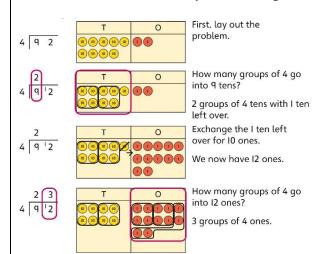
268 ÷ 2 = ?


There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones.

264 ÷ 2 = 134

Use place value equipment on a place value grid alongside short division.

The model uses grouping.


A sharing model can also be used, although the model would need adapting.

Lay out the problem as a short division.

There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones.

Work with divisions that require exchange.

Use short division for up to 4-digit numbers divided by a single digit.

$$3,892 \div 7 = 556$$

Use multiplication to check.

$$6 \times 7 = 42$$

$$50 \times 7 = 350$$

$$500 \times 7 = 3500$$

$$3,500 + 350 + 42 = 3,892$$

Understanding	Understand remainders using concrete	Use short division and understand remainders	In problem solving contexts, represent
remainders	versions of a problem.	as the last remaining 1s. Lay out the problem	divisions including remainders with a bar model.
	80 cakes divided into trays of 6.	T O Lay out the problem as short division.	683
		How many groups of 6 go into 8 tens?	136 136 136 136 3
	80 cakes in total. They make 13 groups of 6, with 2 remaining.	There are 2 tens remaining. 1 3 r 2 T O How many groups of 6 go	683 = 136 × 5 + 3 683 ÷ 5 = 136 r 3
		1 into 20 ones? There are 3 groups of 6 ones. There are 2 ones remaining.	
Dividing	Understand division by 10 using exchange.	Represent division using exchange on a place	Understand the movement of digits on a
decimals by 10,		value grid.	place value grid.
100 and 1,000	2 ones are 20 tenths.	O • Tth Hth O • Tth Hth O • Tth Hth	O • Tth Hth Thth 0 • 8 5
	20 tenths divided by 10 is 2 tenths.	O • Tth Hth	$0 \cdot \cancel{>} 0 \cancel{>} 8 \cancel{>} 5$ $0.85 \div 10 = 0.085$
		• • • • • • • • • • • • • • • • • • • •	O • Tth Hth Thth 8 • 5
		1·5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50	0 • 0 > 8 > 5
		hundredths. 10 tenths divided by 10 is 1 tenth.	8·5 ÷ 100 = 0·085
		50 hundredths divided by 10 is 5 hundredths.	
		<i>1.5 divided by 10 is 1 tenth and 5 hundredths.</i> 1.5 ÷ 10 = 0.15	

Understanding the relationship between fractions and division Use sharing to explore the link between fractions and division.

1 whole shared between 3 people. Each person receives one-third.

Use a bar model and other fraction representations to show the link between fractions and division.

$$1 \div 3 = \frac{1}{3}$$

Use the link between division and fractions to calculate divisions.

$$5 \div 4 = \frac{5}{4} = 1\frac{1}{4}$$

$$11 \div 4 = \frac{11}{4} = 2\frac{3}{4}$$